Abstract
AbstractIn this paper we obtain new estimates for bilinear pseudodifferential operators with symbol in the class $$BS_{1,1}^m$$
B
S
1
,
1
m
, when both arguments belong to Triebel-Lizorkin spaces of the type $$F_{p,q}^{n/p}({\mathbb {R}}^n)$$
F
p
,
q
n
/
p
(
R
n
)
. The inequalities are obtained as a consequence of a refinement of the classical Sobolev embedding $$F^{n/p}_{p,q}({\mathbb {R}}^n)\hookrightarrow \textrm{bmo}({\mathbb {R}}^n)$$
F
p
,
q
n
/
p
(
R
n
)
↪
bmo
(
R
n
)
, where we replace $$\textrm{bmo}({\mathbb {R}}^n)$$
bmo
(
R
n
)
by an appropriate subspace which contains $$L^\infty ({\mathbb {R}}^n)$$
L
∞
(
R
n
)
. As an application, we study the product of functions on $$F_{p,q}^{n/p}({\mathbb {R}}^n)$$
F
p
,
q
n
/
p
(
R
n
)
when $$1<p<\infty $$
1
<
p
<
∞
, where those spaces fail to be multiplicative algebras.
Funder
Ministerio de Ciencia e Innovación
Stockholm University
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics