Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference21 articles.
1. Agemi, R.: The incompressible limit of compressible fluid motion in a bounded domain. Proc. Japan Acad., Ser. A57, 291?293 (1981)
2. Asano, K.: On the incompressible limit of the compressible Euler equation. Jpn. J. Appl. Math.4, 455?488 (1987)
3. Beirão da Veiga, H.: Stationary motions and the incompressible limit for compressible viscous fluids. Houston J. Math.13, 527?544 (1987)
4. Beirão da Veiga, H.: AnL p -theory for then-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions. Commun. Math. Phys.109, 229?248 (1987)
5. Beirão da Veiga, H.: Perturbation theory and well-posedness in Hadamard's sense of hyperbolic initial-boundary value problems. Preprint #2.71 (582), Department of Mathematics, University Pisa (April 1991) JNA: TMA (to appear)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Low Mach Number Limits and Acoustic Waves;Handbook of Mathematical Analysis in Mechanics of Viscous Fluids;2018
2. Low Mach Number Limits and Acoustic Waves;Handbook of Mathematical Analysis in Mechanics of Viscous Fluids;2017
3. Low Mach number limit of viscous polytropic fluid flows;Journal of Differential Equations;2011-10
4. Incompressible limits of the Navier–Stokes equations for all time;Journal of Differential Equations;2009-12
5. A review on some contributions to perturbation theory, singular limits and well-posedness;Journal of Mathematical Analysis and Applications;2009-04