Abstract
AbstractAn improved grasshopper optimization algorithm (GOA) is proposed in this paper, termed CMRWGOA, which combines both Random Weight (shorted RWGOA) and Cauchy mutation (termed CMGOA) mechanism into the GOA. The GOA received inspiration from the foraging and swarming habits of grasshoppers. The performance of the CMRWGOA was validated by 23 benchmark functions in comparison with four well-known meta-heuristic algorithms (AHA, DA, GOA, and MVO), CMGOA, RWGOA, and the GOA. The non-parametric Wilcoxon, Friedman, and Nemenyi statistical tests are conducted on the CMRWGOA. Furthermore, the CMRWGOA has been evaluated in three real-life challenging optimization problems as a complementary study. Various strictly extensive experimental results reveal that the CMRWGOA exhibit better performance.
Funder
Beijing Municipal Government Fund Projects
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Cognitive Neuroscience,Computer Vision and Pattern Recognition,Mathematics (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献