Use of a novel camera trapping approach to measure small mammal responses to peatland restoration

Author:

Littlewood Nick A.ORCID,Hancock Mark H.ORCID,Newey ScottORCID,Shackelford GormORCID,Toney Rose

Abstract

AbstractSmall mammals, such as small rodents (Rodentia: Muroidea) and shrews (Insectivora: Soricidae), present particular challenges in camera trap surveys. Their size is often insufficient to trigger infra-red sensors, whilst resultant images may be of inadequate quality for species identification. The conventional survey method for small mammals, live-trapping, can be both labour-intensive and detrimental to animal welfare. Here, we describe a method for using camera traps for monitoring small mammals. We show that by attaching the camera trap to a baited tunnel, fixing a close-focus lens over the camera trap lens, and reducing the flash intensity, pictures or videos can be obtained of sufficient quality for identifying species. We demonstrate the use of the method by comparing occurrences of small mammals in a peatland landscape containing (i) plantation forestry (planted on drained former blanket bog), (ii) ex-forestry areas undergoing bog restoration, and (iii) unmodified blanket bog habitat. Rodents were detected only in forestry and restoration areas, whilst shrews were detected across all habitat. The odds of detecting small mammals were 7.6 times higher on camera traps set in plantation forestry than in unmodified bog, and 3.7 times higher on camera traps in restoration areas than in bog. When absolute abundance estimates are not required, and camera traps are available, this technique provides a low-cost survey method that is labour-efficient and has minimal animal welfare implications.

Funder

Rural and Environment Science and Analytical Services Division

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3