Abstract
AbstractSupplemental feeding of cervids during winter is a widespread management practice, but feeding may increase the risk of disease transmission. Therefore, legal regulations to limit supplemental feeding are often implemented when dealing with severe infectious diseases, such as chronic wasting disease (CWD) in cervids. However, it is currently unclear whether these regulations result in decreased spatial clustering and aggregation as intended. Supplemental feeding is expected to restrict the movement of cervids. Therefore, a ban on feeding may also result in wider space use and a risk of geographic spread of disease. The space use of 63 GPS-marked red deer (Cervus elaphus) was investigated before (n = 34) and after (n = 29) the implementation of a legal regulation aimed at limiting the supplemental feeding of cervids during winter in a CWD-affected region of Nordfjella, Norway. Snow depth was the main determinant of the space use for red deer. A moderate reduction in the number of GPS positions in spatial clusters was evident during periods of deep snow once the ban was in place. Sizes of core areas (Kernel 50%), home ranges (Kernel 95%), and dispersion (MCP 100%, number of 1 km2 pixels visited per deer) declined from January to March and with increasing snow depth. Dispersion (number of 1 km2 pixels visited per deer) did not depend on snow depth after the ban, and red deer used larger areas when snow depth was high after the ban compared to before. The ban on supplementary feeding had no effect on size of core areas or home ranges. Several potential factors can explain the overall weak effect of the ban on space use, including the use of agricultural fields by red deer, other anthropogenic feeding, and landscape topography. This study highlights that snow depth is the main factor determining space use during winter, and it remains to be determined whether the moderate reduction in spatial clustering during deep snow after the ban was sufficient to lower the risk of disease transmission.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics
Reference53 articles.
1. Arnold JM, Gerhardt P, Steyaert SMJG, Hochbichler E, Hackländer K (2018) Diversionary feeding can reduce red deer habitat selection pressure on vulnerable forest stands, but is not a panacea for red deer damage. For Ecol Manage 407:166–173
2. Bates D, Maechler M (2009) lme4: linear mixed-effects models using S4 classes. R package version 0.999375–32. http://CRAN.R-project.org/package=lme4. Accessed 9 Dec 2022
3. Benestad SL, Mitchell G, Simmons M, Ytrehus B, Vikøren T (2016) First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res 47:88
4. Bjørneraas K, Van Moorter B, Rolandsen CM, Herfindal I (2010) Screening global positioning system location data for errors using animal movement characteristics. J Wildl Manag 74:1361–1366
5. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献