Landscape structure does not hinder the dispersal of an invasive herbivorous mammal in the New Caledonian biodiversity hotspot

Author:

Frantz Alain C.ORCID,Luttringer Amanda,Colyn Marc,Kazilas Christos,Berlioz EmilieORCID

Abstract

AbstractBiological invasions are a major threat to biodiversity and have particularly devastating impacts on island ecosystems. The New Caledonia archipelago is considered a biodiversity hotspot due to its diverse native flora. Javan rusa deer (Rusa timorensis) were introduced to New Caledonia in 1870 and the population consists of several hundred thousand individuals today. They directly threaten rare endemic species and affect the composition and structure of the vegetation. While a rusa deer management plan has identified ten priority areas for deer control operations, removing deer could be offset by the dispersal of animals back into the control areas. Here, we genotyped 628 rusa deer using 16 microsatellite markers to analyse the genetic structure of the animals in New Caledonia. We aimed to assess fine-scale genetic structure, to identify natural barriers to deer movement and to assess functional connectivity by optimising individual-based landscape resistance models. Our results suggested that rusa deer formed a single genetic population on the main New Caledonian island. The isolation-by-distance pattern suggested that female dispersal was limited, whereas males had larger dispersal distances. We assessed functional connectivity using different genetic distance metrics and all models performed poorly (mR2 ≤ 0.0043). Landscape features thus hardly affected deer movement. The characteristics of our results suggested that they were not an artefact of the colonisation history of the species. Achieving an effective reduction of deer population sizes in specific management areas will be difficult because of the deer’s high dispersal capabilities and impossible without very substantial financial investment.

Funder

Agence pour l’Indemnisation des Calamités Agricoles ou Naturelles (APICAN)/Agence rurale

L‘Oréal-UNESCO For Women in Science Grant

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3