Dietary inclusion of nano-phosphorus improves growth performance, carcass quality, and growth-related traits of Nile tilapia (Oreochromis niloticus) and alleviates water phosphorus residues

Author:

Elamawy Anwar,Hegazi Elsayed,Nassef Eldsokey,Abouzed Tarek K.,Zaki Abeer G.,Ismail Taha

Abstract

AbstractSupplementation of phosphorus nanoparticles is a promising strategy to reduce water pollution, improve phosphorus concentration in fish diet, and provide better production quality. We used 300 fingerlings of Nile tilapia that were randomly distributed into 3 groups; each one was attributed to 5 replicates of 20 fish per aquarium with initial weight (gm) (156 ± 1.25). The first diet contained traditional Di-calcium phosphate (D-group), the second supplemented with phosphorus nanoparticles in a dose equal to the previous conventional one (N-D group), and the last one included with phosphorus nanoparticles with the half dose of the conventional phosphorus group (1/2 N-D group). After 3 months of feeding, the N-D group showed the best growth performance including its feed conversion ratio (FCR), feed intake (FI), or body weight gain (BWG). Furthermore, the growth-related gene expression findings considering growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF-1) were upregulated as well. Moreover, whole body chemical composition revealed higher Fe, Zn, P, and crude protein level in the N-D group than the other two groups. Lipoprotein lipase (LPL) and fatty acid synthetase (FAS) mRNA expression showed a significant increase in 1/2 N-D and N-D groups compared with the control group. To sum up, using of nano-phosphorus particles improved the growth rate and immunity response of Nile tilapia, besides decreasing water pollution.

Funder

Academy of Scientific Research and Technology (ASRT) through the program of scientists for Next Generation

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,General Medicine,Physiology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3