1. A. Ambainis, Probabilistic and Team PFIN-type Learning: General Properties, in Proc. 9th ACM Conf. on Comp. Learning Theory (ACM Press, Desenzano del Garda, 1996) 157–168.
2. D. Angluin, Inductive Inference of formal languages from positive data, Information and Control 45 (1980) 117–135.
3. M. Blum, Machine independent theory of complexity of recursive functions, Journal of the ACM 14 (1967) 322–336.
4. R. Daley, B. Kalyanasundaram, Use of reduction arguments in determining Popperian FIN-type learning capabilities, in: Proc of the 3th Int. Workshop on Algorithmic Learning Theory, Lecture Notes in Computer Science 744 (Springer, Berlin, 1993) 173–186.
5. R. Daley, B. Kalyanasundaram, M. Velauthapillai, The power of probabilism in Popperian FINite learning, Proc. of AII, Lecture Notes in Computer Science 642 (Springer, Berlin, 1992) 151–169.