Clinical Appraisal of Cefiderocol in the Treatment of Non-fermenting Gram-Negative Bacilli

Author:

McLeod Caleb C.,Tan Karen K.,Kebriaei Razieh,Abdul-Mutakabbir Jacinda C.ORCID

Abstract

Abstract Purpose of Review Cefiderocol has a potential role in the treatment of infections caused by increasingly resistant non-fermenting Gram-negative organisms. Recent Findings Non-fermenting Gram-negative organisms pose a unique threat to public health given their arsenal of inherent resistance mechanisms. High rates of intrinsic resistance to a wide array of agents, inducible adaptive resistance, and the ability to acquire resistance through horizontal transfer of resistance genes limit the utility of conventional antimicrobial treatment options against non-fermenting Gram-negative infections. Beta-lactams, one of the most reliable classes of antimicrobials, are often rendered inactive by the acquisition of beta-lactamases, with activity potentially restored by beta-lactamase inhibitors. Alteration of intrinsic mechanisms of resistance, porin channels, and efflux pumps reduce the ability of beta-lactamase inhibitors to protect the activity of beta-lactams. This multifactorial nature of resistance exhibited by non-fermenting Gram-negative organisms is difficult to overcome and novel agents are needed to combat this growing threat. Summary Cefiderocol is a novel siderophore cephalosporin that utilizes the active transport of ferric iron to gain access to the periplasmic space of Gram-negative organisms. Cefiderocol also has additional modifications that confer some stability in the presence of beta-lactamases, which can be particularly beneficial for infections caused by non-fermenters. Herein, we discuss the potential role of cefiderocol therapy in the management of infections caused by non-fermenting Gram-negative bacilli, with an intentional focus on carbapenem-resistant Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa, and Stenotrophomonas spp.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antibiotics: From Mechanism of Action to Resistance and Beyond;Indian Journal of Microbiology;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3