Using machine learning with case studies to identify practices that reduce greenhouse gas emissions across Australian grain production regions

Author:

Meier Elizabeth,Thorburn Peter,Biggs Jody,Palmer Jeda,Dumbrell Nikki,Kragt Marit

Abstract

AbstractIt is difficult to identify farm management practices that consistently provide greenhouse gas (GHG) abatement at different locations because effectiveness of practices is greatly influenced by climates and soils. We address this knowledge gap by identifying practices that provide abatement in eight case studies located across diverse conditions in Australian’s grain-producing areas. The case studies focus on soil-based emissions of nitrous oxide (N2O) and changes in soil organic carbon (SOC), simulated over 100 years for 15 cropping management scenarios. Average changes in the balance of GHG from both N2O emissions and SOC sequestration (∆GHG balance) and gross margins compared to a high emissions baseline were determined over 25 and 100 simulated years. Because scenarios providing the greatest abatement varied across individual case studies, we aggregated the data over all case studies and analysed them with a random forest data mining approach to build models for predicting ∆GHG balance. Increased cropping intensity, achieved by including cover crops, additional grains crops, or crops with larger biomass in the rotation, was the leading predictor of ∆GHG balance across the scenarios and sites. Abatement from increased cropping intensity averaged 774 CO2-e ha−1 year−1 (25 years) and 444 kg CO2-e ha−1 year−1 (100 years) compared to the baseline, with reduced emissions from SOC sequestration offsetting increased N2O emissions for both time frames. Increased cropping intensity decreased average gross margins, indicating that a carbon price would likely be needed to maximise GHG abatement from this management. To our knowledge, this is the first time that the random forest approach has been applied to assess management practice effectiveness for achieving GHG abatement over diverse environments. Doing so provided us with more general information about practices that provide GHG abatement than would have come from qualitative comparison of the variable results from the case studies.

Funder

Grains Research and Development Corporation

Department of Agriculture, Fisheries and Forestry, Australian Government

Commonwealth Scientific and Industrial Research Organisation

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Road transportation emission prediction and policy formulation: Machine learning model analysis;Transportation Research Part D: Transport and Environment;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3