Combining Milpa and Push-Pull Technology for sustainable food production in smallholder agriculture. A review

Author:

Librán-Embid Felipe,Olagoke Adewole,Martin Emily A.

Abstract

AbstractAchieving food security remains a pressing challenge for small-scale farmers, especially in sub-Saharan Africa and Latin America. Ongoing climate change, invasive noxious weeds, and crop pests further exacerbate the situation. Optimizing traditional cropping systems for sustainable yields and climate-resilient production is imperative in order to address this challenge. The pre-Columbian milpa system of intercropping maize with companion crops such as beans (Phaseolus vulgaris) and squash (Cucurbita spp.) is one effective system that has been shown to produce outstanding yields per unit area compared to monoculture systems. The Push-Pull Technology developed in East Africa, based on the use of repellent and trap companion plants intercropped with maize (and to a lesser extent sorghum), is seen to be similarly effective in minimizing the impact of major pests on yields, including striga weed (Striga spp.), maize stemborers, and the fall armyworm (Spodoptera frugiperda). Although both systems have the potential to compensate for each other’s limitations, there has been no cross-system learning between the Mesoamerican milpa and the East African Push-Pull Technology. Here, we review both systems and present the advantages likely to be obtained by combining these technologies in small-scale farming. The proposed milpa push-pull system could adapt to different gradients of altitude, rainfall, and soil nutrient levels, in addition to controlling pests, and therefore has the potential to become a fundamental cropping technique in Latin America and sub-Saharan Africa.

Funder

H2020 Societal Challenges

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3