Author:
Liu Ke,Harrison Matthew Tom,Wang Bin,Yang Rui,Yan Haoliang,Zou Juan,Liu De Li,Meinke Holger,Tian Xiaohai,Ma Shangyu,Zhang Yunbo,Man Jianguo,Wang Xiaoyan,Zhou Meixue
Abstract
AbstractCropping of rice and wheat (Triticum aestivum L.) in rotation contiguously in the same field is a fundamental pillar of double-cropping systems in southern China. Yields of such cropping systems are increasingly challenged as climate change (CC) drives increases in autumnal rainfall, delaying rice harvesting and subsequent sowing of wheat. Here, our purpose was to identify prospective traits of wheat crops enabling adaptation to later sowing and successively truncated growing seasons caused by CC. To identify traits that maintained or improved yields, we constructed 4,096 hypothetical genotypes underpinned by step-wise variations in parameters regulating phenology, growth and yield components. We then assimilated biophysical response surfaces through genotype (G) by environment (E) by management (M) analyses (G×E×M) using six locations spread across the breadth of southern China. We showed that later sowing reduced cumulative radiation interception, cumulative thermal time and crop capture of growing season rainfall. The culmination of these factors shortened crop duration and decreased biomass accumulation and retranslocation after anthesis, reducing grain number and penalising yields. Genotypes that had greater radiation use efficiency, longer juvenile phases and greater grain filling rates were more effective in alleviating yield losses with delayed sowing. However, not even the highest yielding genotype × management combination could entirely alleviate yield losses with delayed sowing. Our results suggest that CC and increasingly frequent extreme climatic events may reduce wheat yields in such cropping systems in the absence of other adaptation.
Funder
national natural science foundation of china
fundamental research funds for the central universities
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Environmental Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献