Rice residue management in the Indo-Gangetic Plains for climate and food security. A review

Author:

Kaur Manpreet,Malik Dharm Pal,Malhi Gurdeep Singh,Sardana Virender,Bolan Nanthi S.,Lal Rattan,Siddique Kadambot H. M.ORCID

Abstract

AbstractThis paper reviews and analyzes the impact of residue burning on the environment and human health, and the influence of ex-situ and in-situ residue management on reducing pollution and improving soil health, crop yield, and farmers’ economic benefits. Paddy is cultivated on 43.8 Mha in India, producing 118.43 Mt grain and an estimated 165.8 Mt straw. Burning is the most common practice for managing rice crop residues mainly due to its simplicity, low cost, increased mechanical harvesting, short window between rice harvest and wheat sowing, and lack of viable uses for residues. Around 50 Mt of rice straw is burned annually, nearly half of which occurs in northwestern India during October/November. Burning residue is a major contributor to air pollution, emitting around 1.5 Mt particulate matter, 150 Mt carbon dioxide, and other greenhouse gases (e.g., NO2, SO2, CO, CH4, NH3) and volatile organic compounds, resulting in a wide range of respiratory infections in humans, reduced soil nutrient and carbon inputs, and disturbed soil microbial activity. In-situ residue management using a Happy Seeder, Super straw management system, paddy straw chopper cum spreader, reversible moldboard plow, or no-till seeder incorporates or mulches residues, avoiding burnings. These operations are economically profitable as they reduce costs, increase yields, or both. In-situ residue management, i.e., incorporation or mulching improves the soil’s physical, chemical and biological properties and is considered better for improving soil health than residue removal. Ex-situ residue management for biofuel, biochar, electricity generation or bale making is also profitable for the environment and reduces pollutant emissions.

Funder

University of Western Australia

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3