Impact of climate change on weeds in agriculture: a review

Author:

Peters Kristian,Breitsameter Laura,Gerowitt Bärbel

Abstract

Abstract Over the past decades, climate change has induced transformations in the weed flora of arable ecosystems in Europe. For instance, thermophile weeds, late-emerging weeds, and some opportunistic weeds have become more abundant in some cropping systems. The composition of arable weed species is indeed ruled by environmental conditions such as temperature and precipitation. Climate change also influences weeds indirectly by enforcing adaptations of agronomic practice. We therefore need more accurate estimations of the damage potential of arable weeds to develop effective weed control strategies while maintaining crop yield. Here we review the mechanisms of responses of arable weeds to the direct and indirect effects of climate change. Climate change effects are categorized into three distinct types of shifts occurring at different scales: (1) range shifts at the landscape scale, (2) niche shifts at the community scale, and (3) trait shifts of individual species at the population scale. Our main conclusions are changes in the species composition and new species introductions are favored, which facilitate major ecological and agronomical implications. Current research mainly considers processes at the landscape scale. Processes at the population and community scales have prevalent importance to devise sustainable management strategies. Trait-climate and niche-climate relationships warrant closer consideration when modeling the possible future distribution and damage potential of weeds with climate change.

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3