Soil properties resulting in superior maize yields upon climate warming

Author:

Feng PuyuORCID,Wang Bin,Harrison Matthew Tom,Wang Jing,Liu Ke,Huang Mingxia,Liu De Li,Yu Qiang,Hu Kelin

Abstract

AbstractThe impacts of global climate warming on maize yield vary regionally. However, less is known about how soil modulates regionally specific impacts and soil properties that are able to alleviate adverse impacts of climate warming on maize productivity. In this study, we investigated the impacts of multiple soil inherent properties on the sensitivity of maize yield (SY,T) to growing season temperature across China. Our results show that a 1°C warming resulted in the largest yield decline (11.2 ± 6.1%) in the mid-eastern region, but the moderate yield increase (1.5 ± 2.9%) in the north-eastern region. Spatial variability in soil properties explained around 72% of the variation in SY,T. Soil organic carbon (SOC) content positively contributed the greatest extent (28.9%) to spatial variation of SY,T, followed by field capacity (9.7%). Beneficial impacts of increasing SOC content were pronounced in the north-eastern region where SOC content (11.9 ± 4.3 g kg−1) was much higher than other regions. Other soil properties (e.g., plant wilting point, sand content, bulk density, and saturated water content) were generally negatively correlated with SY,T. This study is the first one to answer how soil inherent properties can modulate the negative impacts of climate warming on maize yield in China. Our findings highlight the importance of SOC in alleviating adverse global warming impacts on maize productivity. To ensure food security for a rapidly increasing population under a changing climate, appropriate farming management practices that improve SOC content could reduce risk of adverse effects of global climate warming through a gain in yield stability and more resilient production in China’s maize belt.

Funder

University of Tasmania

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3