Maize grain yield responses to realistic biochar application rates on smallholder farms in Kenya

Author:

Kätterer ThomasORCID,Roobroeck Dries,Kimutai Geoffrey,Karltun Erik,Nyberg Gert,Sundberg Cecilia,de Nowina Kristina Röing

Abstract

AbstractDespite efforts to increase agricultural production sustainably in sub-Saharan Africa, large gaps remain between actual and potential yield of food crops. Adding biochar to degraded cropland soils in the African tropics has significant potential to enhance crop productivity. Biochar-based farming can also mitigate climate change, through soil carbon storage. This study involved six smallholder farms at sites in eastern, central, and western Kenya that are characterized by different pedo-climatic conditions. We examined the response of non-fertilized and fertilized maize monoculture to three dosages of biochar that are realistic for domestic production by farmers at each of the sites over four growing seasons. Commonly available biomass wastes in each agro-ecosystem (coconut shells, coffee husks, maize cobs) were used as feedstock for biochar, which was applied at 1, 5, and 10 Mg ha−1 at the start of the experiment. Across seasons and fertilizer treatments, maize grain yield (dry matter) showed consistently positive responses, with an average increase of 1.0, 2.6, and 4.0 Mg ha−1, respectively, above the control for the three biochar application rates. Absolute responses of maize grain yield to specific biochar doses were similar across the four investigated seasons and replicate farms within sites, and uncorrelated to yield levels in the control treatment. Here, we show for the first time that yield response to biochar decreased with increasing application rate, indicating that it may be better to spread a given amount of biochar over a large area rather than concentrating it to a smaller area, at least when biochar is applied along plant rows at rates ≥1 Mg ha−1, as in our experiment. This study demonstrated that application of biochar, locally produced from available biomass residues, is a promising approach to enhance agricultural production and carbon storage on smallholder farms under a wide range of pedo-climatic conditions in Kenya.

Funder

Svenska Forskningsrådet Formas

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3