Abstract
AbstractIn the paper, a theoretical analysis regarding foundation forces caused by dynamic air gap torques of converter-driven induction motors, influenced by active vibration control, is shown. Based on a plane model, where actuators are placed between the motor feet and steel frame foundation and where the vertical motor feet accelerations are controlled, a mathematical description in the time domain, Laplace domain, and Fourier domain is presented, as well as a block diagram for numerical simulation. A numerical example is shown, where a 2-pole induction motor (2 MW) is analyzed for different cases—motor directly mounted on a steel frame foundation (case 1), actuators between motor feet and foundation, operating passively (case 2) and actively (case 3). It could be shown, that with the presented active vibration control concept the foundation forces due to dynamic air gap torques can be clearly reduced.
Funder
Technische Hochschule Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献