A comparative study of long-term load forecasting techniques applied to Tunisian grid case
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Electrical and Electronic Engineering
Link
http://link.springer.com/content/pdf/10.1007/s00202-019-00859-w.pdf
Reference46 articles.
1. Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure JT, Westfall L (2016) International energy outlook 2016 with projections to 2040 (No. DOE/EIA-0484 (2016)). USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis
2. Cancelo JR, Espasa A, Grafe R (2008) Forecasting the electricity load from one day to one week ahead for the Spanish system operator. Int J Forecast 24(4):588–602
3. Dordonnat V, Pichavant A, Pierrot A (2016) GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models. Int J Forecast 32(3):1005–1011
4. Singh AK, Khatoon S, Muazzam M, Chaturvedi DK (2012) Load forecasting techniques and methodologies: a review. In: The 2nd IEEE international conference on power, control and embedded systems (ICPCES), pp 1–10
5. Hong T, Wilson J, Xie J (2014) Long term probabilistic load forecasting and normalization with hourly information. IEEE Trans Smart Grid 5(1):456–462
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Forecasting of short term electric power consumption for different types buildings using improved transfer learning: A case study of primary school in China;Journal of Building Engineering;2023-11
2. A Comparative Analysis for Machine Learning-based Short-Term Load Forecasting Techniques;2023 IEEE 6th International Electrical and Energy Conference (CIEEC);2023-05-12
3. Long-Term Electrical Load Forecasting in Rwanda Based on Support Vector Machine Enhanced with Q-SVM Optimization Kernel Function;Journal of Power and Energy Engineering;2023
4. Energy Demand Forecasting and Optimizing Electric Systems for Developing Countries;IEEE Access;2023
5. Long-term natural gas peak demand forecasting in Tunisia Using machine learning;2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2022-03-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3