Real-time optimization in electric vehicle stations using artificial neural networks

Author:

Elkasrawy M. A.,Abdellatif Sameh O.,Ebrahim Gamal A.,Ghali Hani A.

Abstract

AbstractThe current study proposes a smart decision-making algorithm to be utilized in electric vehicle stations. The suggested approach emphasizes the prediction of queuing delay seeking for minimum total charging time. For this purpose, artificial neural network (ANN) model is used, where a dataset is pre-generated to be seeded into the model. The proposed model effectiveness can be proven when the number of arriving vehicles at the station exceeds the maximum number of charging points at the station. The model accuracy was recorded to reach 89%. For validity, the proposed ANN model was evaluated with respect to a meta-heuristic optimizer, showing a reduced total charging time by 2.5%, and 23.9% with respect to a bare model with no optimization. As a final validation step, a physical realization of the ANN model was conducted by emulating a vehicle as a transmitting node and the station as a receiving node.

Funder

Science and Technology Development Fund

British University in Egypt

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Electrical and Electronic Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3