A novel two-layer winding topology for sub-harmonic synchronous machines

Author:

Rafin S. M. Sajjad HossainORCID,Ali Qasim,Khan Sajid,Lipo Thomas A.

Abstract

AbstractWith optimized design and modern brushless operation, wound rotor synchronous machines are resurrecting as a strong contender in many applications presently dominated by permanent magnet machines. Considering the notion, this paper introduces a novel brushless synchronous machine topology that utilizes sub-harmonic magnetomotive force (MMF) of its stator winding for desirable brushless operation. It is significant to state that the sub-harmonic MMF component that is used in this novel topology is one-fourth of the fundamental MMF component, whereas, in previous practices, it was half. Moreover, the stator of the machine uses a new winding arrangement of two sets of balanced three-phase windings wound in two layers to produce the fundamental and the sub-harmonic MMF. To achieve the brushless excitation, the rotor utilizes an additional winding that is used to induce the electromotive force (EMF) by the sub-harmonic MMF component of the stator. This novel two-layer stator winding topology permits the utilization of maximum allowable space in the stator to house conductors in all of its 48 slots, which was not the case in previous papers. To validate the performance, and feasibility, an 8-pole 48-slot brushless wound rotor synchronous motor is designed, and a 2-D finite element analysis simulation is conducted, where the topology shows immense potential in terms of better torque performance.

Funder

Griffith University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Electrical and Electronic Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State-of-the-Art Electric Vehicle Modeling: Architectures, Control, and Regulations;Electronics;2024-09-09

2. Dual Inverter Parallel Consequent Pole PM-Assisted Two-Layer Sub-Harmonic Synchronous Machine;2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC);2024-06-02

3. Self-Excited Wound Field Flux Modulated Machine using fractional-slot concentrated winding;2024 IEEE 7th International Electrical and Energy Conference (CIEEC);2024-05-10

4. Hybrid Three-Layer Sub-Harmonic Synchronous Machine using Consequent Pole Permanent Magnets;2024 IEEE International Magnetic Conference - Short papers (INTERMAG Short papers);2024-05-05

5. Design and Control of a Permanent Magnet Assisted Synchronous Reluctance Motor;International Journal of Automotive Science and Technology;2023-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3