A comprehensive research of machine learning algorithms for power quality disturbances classifier based on time-series window

Author:

Akkaya Sıtkı,Yüksek Emre,Akgün Hasan Metehan

Funder

Scientific Research Unity of Sivas University of Science and Technology.

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. IEEE Power and Energy Society (2009) In: IEEE—Recommended practice for monitoring electric power quality, vol 1995, no 1

2. IEEE Power & Energy Society (2010) In: 2010–1459-IEEE standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions

3. I. Standard and N. Internationale (2008) IEC Standard 61000-4-7: general guide on harmonics and interharmonics measurements and measuring instruments for power supply networks and attached devices used for the measurements

4. I. Power and E. Society (2011) IEEE recommended practice-adoption of IEC 61000-4-15: 2010, electromagnetic compatibility (EMC)-testing and measurement techniques-Flickermeter-functional and design specifications, no. October

5. International Electrotechnical Commission (2003) IEC Standard 61000-4-30: testing and measurement techniques-power quality measurement methods, vol 2003, p 90

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Prediction Model on the Operation Quality of Medical Equipment Based on Improved Sparrow Search Algorithm-Temporal Convolutional Network-BiLSTM;Sensors;2024-08-29

2. Laboratory Setup for Testing Low-Frequency Disturbances of Power Quality;2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2024-06-24

3. Assessment of Diagnostic Capabilities of Methods of Recreation of Voltage Fluctuations;2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2024-06-24

4. Dynamics Power Quality Cost Assessment Based on a Gradient Descent Method;Energies;2024-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3