Red deer optimized recurrent neural network for the classification of power quality disturbance
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Electrical and Electronic Engineering
Link
https://link.springer.com/content/pdf/10.1007/s00202-022-01701-6.pdf
Reference35 articles.
1. Singh U. (2020) A Research Review on Detection and Classification of Power Quality Disturbances caused by Integration of Renewable Energy Sources, 2020 arXiv preprint arXiv:2009.11426.
2. Kiruthiga B, Banu RN, Devaraj D (2020) Detection and classification of power quality disturbances or events by adaptive NFS classifier. Soft Comput 24(14):10351–10362
3. Chawda GS, Shaik AG, Shaik M, Padmanaban S, Holm-Nielsen JB, Mahela OP, Kaliannan P (2020) Comprehensive review on detection and classification of power quality disturbances in utility grid with renewable energy penetration. IEEE Access 8:146807–146830
4. Cortes-Robles O, Barocio E, Obushevs A, Korba P, Sevilla FRS (2021) Fast-training feedforward neural network for multi-scale power quality monitoring in power systems with distributed generation sources. Measurement 170:108690
5. Ray P, Budumuru GK, Mohanty BK (2018) A comprehensive review on soft computing and signal processing techniques in feature extraction and classification of power quality problems. J Renew Susta Energy 10(2):025102
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning Aided Power Quality Disturbance Detection with Improved Time-frequency Resolution Employing Adaptive Superlet Transform;2024-08-10
2. Accurate classification of power quality disturbance based on 3D visualized spiral curve and hybrid ER-MVCNN model;Measurement;2024-05
3. Power quality monitoring in electric grid integrating offshore wind energy: A review;Renewable and Sustainable Energy Reviews;2024-03
4. An algorithm for the classification of power quality disturbance signals using a tunable-Q-factor wavelet transform and ensemble learning methodology;Electrical Engineering;2024-02-29
5. Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue;Energies;2024-01-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3