A hybrid model of CNN and LSTM autoencoder-based short-term PV power generation forecasting

Author:

Ibrahim Mohamed Sayed,Gharghory Sawsan Morkos,Kamal Hanan Ahmed

Abstract

AbstractSolar energy is one of the main renewable energies available to fulfill global clean energy targets. The main issue of solar energy like other renewable energies is its randomness and intermittency which affects power grids stability. As a solution for this issue, energy storage units could be used to store surplus energy and reuse it during low solar generation intervals. Also, in order to sustain stable power grid and better grid operation and energy storage management, photovoltaic (PV) power forecasting is inevitable. In this paper, new hybrid model based on deep learning techniques is proposed to predict short-term PV power generation. The proposed model incorporates convolutional neural network (CNN) and long short-term memory (LSTM) autoencoder network. The new model differentiates itself in accomplishing high prediction accuracy by extracting spatial features in time series via CNN layers and temporal features between the time series data through LSTM. The introduced model is tested on dataset of power generation from southern UK solar farm and the weather data corresponding to same location and time intervals; the forecasting performance of the suggested model is evaluated in metrics of root-mean-square error (RMSE) and mean absolute error (MAE). The used model is compared with different models from the literature either of pure type of network such as LSTM and gated recurrent unit (GRU) or hybrid combination of different networks like CNN-LSTM and CNN-GRU. The results show that proposed model provides enhanced results and reduces training time significantly compared to other competitive models, where the performance of the proposed model improved averagely by 5% to 25% in terms of RMSE and MAE performance metrics, and the execution time of training significantly reduced with almost 70% less compared to other models.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3