Feature extraction and power quality event classification using Curvelet transform and optimized extreme learning machine
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Electrical and Electronic Engineering
Link
https://link.springer.com/content/pdf/10.1007/s00202-021-01243-3.pdf
Reference43 articles.
1. Mishra M (2018) Power quality disturbance detection and classification using signal processing and soft computing techniques: a comprehensive review. Int Trans Electr Energy Syst e12008
2. Montoya F, Baños R, Alcayde A, Montoya M, Manzano-Agugliaro F (2018) Power quality: scientific collaboration networks and research trends. Energies 11(8):2067
3. Mahela OP, Shaik AG, Gupta N (2015) A critical review of detection and classification of power quality events. Renew Sustain Energy Rev 41:495–505
4. Granados-Lieberman D, Romero-Troncoso RJ, Osornio-Rios RA, Garcia-Perez A, Cabal-Yepez E (2011) Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review. IET Gener Transm Distrib 5(4):519–529
5. Saini MK, Kapoor R (2012) Classification of power quality events–a review. Int J Electr Power Energy Syst 43(1):11–19
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hybrid binarized neural network for high-accuracy classification of power quality disturbances;Electrical Engineering;2024-08-07
2. Finite automata machine fostered automatic teeth brushing task assistance for people with cognitive disabilities;Biomedical Signal Processing and Control;2024-07
3. High-accuracy classification of power quality disturbances using hybrid binary neural network;2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia);2024-05-17
4. Applications of Machine Learning in Modern Power Systems: A Comprehensive Review;2023 3rd International Conference on New Energy and Power Engineering (ICNEPE);2023-11-24
5. Power quality recognition in noisy environment employing deep feature extraction from cross stockwell spectrum time–frequency images;Electrical Engineering;2023-09-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3