Epigallocatechin-3-gallate Enhances Cognitive and Memory Performance and Protects Against Brain Injury in Methionine-induced Hyperhomocysteinemia Through Interdependent Molecular Pathways

Author:

Mostafa Mostafa D.,ElKomy Magda A,Othman Azza I.,Amer Maggie E.,El-Missiry Mohamed A.ORCID

Abstract

AbstractBrain injury and cognitive impairment are major health issues associated with neurodegenerative diseases in young and aged persons worldwide. Epigallocatechin-3-gallate (EGCG) was studied for its ability to protect against methionine (Met)-induced brain damage and cognitive dysfunction. Male mice were given Met-supplemented in drinking water to produce hyperhomocysteinemia (HHcy)-induced animals. EGCG was administered daily concurrently with Met by gavage. EGCG attenuated the rise in homocysteine levels in the plasma and the formation of amyloid-β and tau protein in the brain. Cognitive and memory impairment in HHcy-induced mice were significantly improved by EGCG administration. These results were associated with improvement in glutamate and gamma-aminobutyric acid levels in the brain. EGCG maintained the levels of glutathione and the activity of antioxidant enzymes in the brain. As a result of the reduction of oxidative stress, EGCG protected against DNA damage in Met-treated mice. Moreover, maintaining the redox balance significantly ameliorated neuroinflammation evidenced by the normalization of IL-1β, IL-6, tumor necrosis factor α, C-reactive protein, and IL-13 in the same animals. The decreases in both oxidative stress and inflammatory cytokines were significantly associated with upregulation of the antiapoptotic Bcl-2 protein and downregulation of the proapoptotic protein Bax, caspases 3 and 9, and p53 compared with Met-treated animals, indicating a diminution of neuronal apoptosis. These effects reflect and explain the improvement in histopathological alterations in the hippocampus of Met-treated mice. In conclusion, the beneficial effects of EGCG may be due to interconnecting pathways, including modulation of redox balance, amelioration of inflammation, and regulation of antiapoptotic proteins. Graphical Abstract

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Toxicology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3