Posttreatment with Ospemifene Attenuates Hypoxia- and Ischemia-Induced Apoptosis in Primary Neuronal Cells via Selective Modulation of Estrogen Receptors

Author:

Pietrzak Bernadeta A.,Wnuk Agnieszka,Przepiórska Karolina,Łach Andrzej,Kajta Małgorzata

Abstract

AbstractStroke and perinatal asphyxia have detrimental effects on neuronal cells, causing millions of deaths worldwide each year. Since currently available therapies are insufficient, there is an urgent need for novel neuroprotective strategies to address the effects of cerebrovascular accidents. One such recent approach is based on the neuroprotective properties of estrogen receptors (ERs). However, activation of ERs by estrogens may contribute to the development of endometriosis or hormone-dependent cancers. Therefore, in this study, we utilized ospemifene, a novel selective estrogen receptor modulator (SERM) already used in dyspareunia treatment. Here, we demonstrated that posttreatment with ospemifene in primary neocortical cell cultures subjected to 18 h of hypoxia and/or ischemia followed by 6 h of reoxygenation has robust neuroprotective potential. Ospemifene partially reverses hypoxia- and ischemia-induced changes in LDH release, the degree of neurodegeneration, and metabolic activity. The mechanism of the neuroprotective actions of ospemifene involves the inhibition of apoptosis since the compound decreases caspase-3 overactivity during hypoxia and enhances mitochondrial membrane potential during ischemia. Moreover, in both models, ospemifene decreased the levels of the proapoptotic proteins BAX, FAS, FASL, and GSK3β while increasing the level of the antiapoptotic protein BCL2. Silencing of specific ERs showed that the neuroprotective actions of ospemifene are mediated mainly via ESR1 (during hypoxia and ischemia) and GPER1 (during hypoxia), which is supported by ospemifene-evoked increases in ESR1 protein levels in hypoxic and ischemic neurons. The results identify ospemifene as a promising neuroprotectant, which in the future may be used to treat injuries due to brain hypoxia/ischemia.

Funder

Statutory fund of the Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland

Publisher

Springer Science and Business Media LLC

Subject

Toxicology,General Neuroscience

Reference67 articles.

1. Arevalo MA, Azcoitia I, Garcia-Segura LM (2015) The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 16(1):17–29. https://doi.org/10.1038/nrn3856

2. Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, Machado C, Santo G, Silva F, Ferreira L, Santana I, Sargento-Freitas J (2020) Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol 11:594672. https://doi.org/10.3389/fneur.2020.594672

3. Burguete MC, Jover-Mengual T, López-Morales MA, Aliena-Valero A, Jorques M, Torregrosa G, Alborch E, Castelló-Ruiz M, Salom JB (2019) The selective oestrogen receptor modulator, bazedoxifene, mimics the neuroprotective effect of 17β-oestradiol in diabetic ischaemic stroke by modulating oestrogen receptor expression and the MAPK/ERK1/2 signalling pathway. J Neuroendocrinol 31(8):e12751. https://doi.org/10.1111/jne.12751

4. Cagnacci A, Xholli A, Venier M (2020) Ospemifene in the management of vulvar and vaginal atrophy: focus on the assessment of patient acceptability and ease of use. Patient Prefer Adherence 14:55–62. https://doi.org/10.2147/PPA.S203614

5. Castelló-Ruiz M, Torregrosa G, Burguete MC, Salom JB, Gil JV, Miranda FJ, Jover-Mengual T, Marrachelli VG, Alborch E (2011) Soy-derived phytoestrogens as preventive and acute neuroprotectors in experimental ischemic stroke: influence of rat strain. Phytomedicine 18(6):513–515. https://doi.org/10.1016/j.phymed.2011.02.001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3