Author:
Buonvicino Daniela,Ranieri Giuseppe,Chiarugi Alberto
Abstract
AbstractNOD mice represent a unique strain that recapitulates some aspects of progressive MS when subjected to experimental autoimmune encephalomyelitis (EAE). It is unknown, however, whether a proneness to demyelination and/or defect in remyelination contribute to disease progression in NOD mice. Answering to this question might help deciphering the molecular and cellular events underpinning disease evolution in progressive MS. Here, we compared the cuprizone-dependent demyelination and remyelination responses, as well as their functional correlates, in NOD, C57BL/6, and SJL mice typically adopted to model progressive, chronic or relapsing EAE. We report that demyelination occurred to a similar extent in the three mice strains, and that in none of them there was evidence of axonal degeneration during prolonged demyelination. Moreover, immunostaining for GFAP+ astrocytes, Iba1+ microglia, and NG2+ oligodendrocyte precursor cells similarly increased in the 3 mouse strains after cuprizone exposure. The mice underwent concomitant and complete remyelination 2 weeks after cuprizone withdrawal. On a functional level, NOD mice showed the earliest reduction of spontaneous motility and full recovery, but no impairment of motor skill. Conversely, C57BL/6 animals showed phasic reduction of both spontaneous motility and motor skill. Lastly, SJL mice presented the most severe neurological impairment with long-lasting reduction of spontaneous motility and motor skill. Overall, data suggest that the unique feature of EAE progression in NOD mice is not due to proneness to demyelination or intrinsic defects in myelin formation. Findings also unravel important functional differences in the response of the three mouse stains to cuprizone that can be harnessed to design and interpret future experiments.
Funder
Fondazione Italiana Sclerosi Multipla
Università degli Studi di Firenze
Publisher
Springer Science and Business Media LLC
Subject
Toxicology,General Neuroscience
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献