Comparison of simple augmentation transformations for a convolutional neural network classifying medical images
-
Published:2024-02-11
Issue:4
Volume:18
Page:3353-3360
-
ISSN:1863-1703
-
Container-title:Signal, Image and Video Processing
-
language:en
-
Short-container-title:SIViP
Author:
Rainio OonaORCID, Klén RikuORCID
Abstract
AbstractSimple image augmentation techniques, such as reflection, rotation, or translation, might work differently for medical images than they do for regular photographs due to the fundamental properties of medical imaging techniques and the bilateral symmetry of the human body. Here, we compare the predictions of a convolutional neural network (CNN) trained for binary classification by using either no augmentation or one of seven usual types augmentation. We have 11 different medical data sets, mostly related to lung infections or cancer, with X-rays, ultrasound (US) images, and images from positron emission tomography (PET) and magnetic resonance imaging (MRI). According to our results, the augmentation types do not produce statistically significant differences for US and PET data sets, but, for X-rays and MRI images, the best augmentation technique is adding Gaussian blur to images.
Funder
University of Turku
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015) 2. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 21(28), 104863 (2019) 3. Anttinen, M., Ettala, O., Malaspina, S., Jambor, I., Sandell, M., Kajander, S., Rinta-Kiikka, I., Schildt, J., Saukko, E., Rautio, P., Timonen, K.L., Matikainen, T., Noponen, T., Saunavaara, J., Löyttyniemi, E., Taime, P., Kemppainen, J., Dean, P.B., Sequeiros, R.B., Aronen, H.J., Seppänen, M., Boström, P.J.: A prospective comparison of 18F-prostate-specific membrane antigen-1007 positron emission tomography computed tomography, whole-body 1.5 T magnetic resonance imaging with diffusion-weighted imaging, and single-photon emission computed tomography/computed tomography with traditional imaging in primary distant metastasis staging of prostate cancer (PROSTAGE). Eur. Urol. Oncol. 4(4), 635–644 (2021) 4. Bali, M., Mahara, T.: Comparison of affine and DCGAN-based data augmentation techniques for chest X-ray classification. Procedia Comput. Sci. 218, 283–290 (2023) 5. Chen, Y., Yang, X.-H., Wei, Z., Heidari, A.A., Zheng, N., Li, Z., Chen, H., Hu, H., Zhou, Q., Guan, Q.: Generative adversarial networks in medical image augmentation: a review. Comput. Biol. Med. 144, 105382 (2022)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Medical Image Generation Techniques for Data Augmentation: Disc-VAE versus GAN;2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS);2024-04-24
|
|