1. Can, Y.B., Chaitanya, K., Mustafa, B., Koch, L.M., Konukoglu, E., Baumgartner C.F.: Learning to segment medical images with scribble-supervision alone. arXiv [cs. CV] (2018)
2. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken, B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., Ronneberger, O., Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka, J., Heckers, S.H., Jarnagin, W.R., McHugo, M.K., Napel, S., Vorontsov, E., Maier-Hein L., Cardoso, M.J.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv [cs. CV] (2019)
3. Gu, Z., Cheng, J., Fu, H., Zhou, K., Hao, H., Zhao, Y., Zhang, T., Gao, S., Liu, J.: CE-Net: context encoder network for 2D medical image segmentation. arXiv [cs. CV] (2019).
4. Teng, L., Li, H., Karim, S.: DMCNN: a deep multiscale convolutional neural network model for medical image segmentation. J. Healthc. Eng. (2019)
5. Öztürk, S., Ahmad, R., Akhtar, N.: Variants of artificial bee colony algorithm and its applications in medical image processing. Appl. Soft Comput. (2020)