Author:
Wang Shi,Yang Ning,Liu Maohua,Tian Qing,Zhang Shihui
Funder
Central Government Guided Local Funds for Science and Technology Development
National Natural Science Foundation of China
Hebei Natural Science Foundation
Science Research Project of Hebei Education Department
Innovation Capability Improvement Plan Project of Hebei Province
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Aggarwal, A., Bhutani, N., Kapur, R., Dhand, G., Sheoran, K.: Real-time hand gesture recognition using multiple deep learning architectures. Signal Image Video Process. 17(8), 3963–3971 (2023)
2. Sahoo, J.P., Sahoo, S.P., Ari, S., Patra, S.K.: Rbi-2rcnn: residual block intensity feature using a two-stage residual convolutional neural network for static hand gesture recognition. Signal Image Video Process. 16(8), 2019–2027 (2022)
3. Jiang, Y., Zhao, M., Wang, C., Wei, F., Wang, K., Qi, H.: Diver’s hand gesture recognition and segmentation for human-robot interaction on AUV. Signal Image Video Process. 15(8), 1899–1906 (2021)
4. Urooj, A., Borji, A.: Analysis of hand segmentation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4710–4719 (2018)
5. Gnanapriya, S., Rahimunnisa, K.: A hybrid deep learning model for real time hand gestures recognition. Intell. Autom. Soft Comput. 36(1), 1105–1119 (2023). https://doi.org/10.32604/iasc.2023.032832