Object-centric and memory-guided network-based normality modeling for video anomaly detection
Author:
Funder
CSRI, Government of India
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Signal Processing
Link
https://link.springer.com/content/pdf/10.1007/s11760-022-02161-y.pdf
Reference20 articles.
1. Deepak, K., Chandrakala, S., Mohan, C.K.: Residual spatiotemporal autoencoder for unsupervised video anomaly detection. Signal, Image Video Process 15, 215–222 (2021)
2. Del Giorno, A., Bagnell, J. A., Hebert, M.: A discriminative framework for anomaly detection in large videos. In: European Conference on Computer Vision. Springer, pp 334–349 (2016)
3. Dong, F., Zhang, Y., Nie, X.: Dual discriminator generative adversarial network for video anomaly detection. IEEE Access 8, 88170–88176 (2020)
4. Gong, D., Liu, L., Le, V., et al.: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1705–1714 (2019)
5. Hasan, M., Choi, J., Neumann, J., et al.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 733–742 (2016)
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimal object stitching and video condensation-aided improved YOLOv5-oriented anomaly object detection framework;International Journal of Wavelets, Multiresolution and Information Processing;2024-06-07
2. Domain generalization for video anomaly detection considering diverse anomaly types;Signal, Image and Video Processing;2024-02-22
3. Self-supervised anomaly detection based on foreground enhancement and autoencoder reconstruction;Signal, Image and Video Processing;2023-09-09
4. Learning Appearance-Motion Synergy via Memory-guided Event Prediction for Video Anomaly Detection;IEEE Transactions on Circuits and Systems for Video Technology;2023
5. Anomaly detection in surveillance videos: a thematic taxonomy of deep models, review and performance analysis;Artificial Intelligence Review;2022-08-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3