Processing of high-speed videos of shock wave boundary layer interactions

Author:

Maharjan SameeORCID,Bjerketvedt Dag,Lysaker Ola Marius

Abstract

AbstractThis paper presents a framework for processing high-speed videos recorded during gas experiments in a shock tube. The main objective is to study boundary layer interactions of reflected shock waves in an automated way, based on image processing. The shock wave propagation was recorded at a frame rate of 500,000 frames per second with a Kirana high-speed camera. Each high-speed video consists of 180 frames, with image size [$$768 \times 924$$ 768 × 924 ] pixels. An image processing framework was designed to track the wave front in each image and thereby estimate: (a) the shock position; (b) position of triple point; and (c) shock angle. The estimated shock position and shock angle were then used as input for calculating the pressure exerted by the shock. To validate our results, the calculated pressure was compared with recordings from pressure transducers. With the proposed framework, we were able to identify and study shock wave properties that occurred within less than $$300\, \upmu \hbox {sec}$$ 300 μ sec and to track evolveness over a distance of 100 mm. Our findings show that processing of high-speed videos can enrich, and give detailed insight, to the observations in the shock experiments.

Funder

University Of South-Eastern Norway

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3