A novel and accurate deep learning-based Covid-19 diagnostic model for heart patients

Author:

Hassan Ahmed,Elhoseny Mohamed,Kayed Mohammed

Abstract

AbstractUsing radiographic changes of COVID-19 in the medical images, artificial intelligence techniques such as deep learning are used to extract some graphical features of COVID-19 and present a Covid-19 diagnostic tool. Differently from previous works that focus on using deep learning to analyze CT scans or X-ray images, this paper uses deep learning to scan electro diagram (ECG) images to diagnose Covid-19. Covid-19 patients with heart disease are the most people exposed to violent symptoms of Covid-19 and death. This shows that there is a special, unclear relation (until now) and parameters between covid-19 and heart disease. So, as previous works, using a general diagnostic model to detect covid-19 from all patients, based on the same rules, is not accurate as we prove later in the practical section of our paper because the model faces dispersion in the data during the training process. So, this paper aims to propose a novel model that focuses on diagnosing accurately Covid-19 for heart patients only to increase the accuracy and to reduce the waiting time of a heart patient to perform a covid-19 diagnosis. Also, we handle the only one existed dataset that contains ECGs of Covid-19 patients and produce a new version, with the help of a heart diseases expert, which consists of two classes: ECGs of heart patients with positive Covid-19 and ECGs of heart patients with negative Covid-19 cases. This dataset will help medical experts and data scientists to study the relation between Covid-19 and heart patients. We achieve overall accuracy, sensitivity and specificity 99.1%, 99% and 100%, respectively.

Funder

Beni Suef University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unit of Analysis Guide, Part 2: Not Everything That Can Be Counted Counts;Aesthetic Surgery Journal;2024-06-03

2. QTc-Based Machine Learning Analysis of COVID-19 and Post-COVID-19 Patients;2023 IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3