Author:
Li Liang,Jin Weidong,Huang Yingkun,Shahid Muhammad Bilal
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Signal Processing
Reference22 articles.
1. Qiupin, L., Jun, Y., Bendong, T., Liang, W., Siyao, F., Liwei, H.: An automatic eecognition and defect diagnosis model of transmission line insulator based on YOLOv2 network. Electr. Power 52(7), 31–39 (2019)
2. Tan, P., Li, X.F., Xu, J.M., Ma, J.E., Wang, F.J., Ding, J., Fang, Y.T., Ning, Y.: Catenary insulator defect detection based on contour features and gray similarity matching. J. Zhejiang Univ.-Sci. A 21(1), 64–73 (2020)
3. Li, T., Hao, T.: Damage detection of insulators in catenary based on deep learning and Zernike moment algorithms. Appl. Sci. 12(10), 5004 (2022)
4. Kang, G., Gao, S., Yu, L., Zhang, D.: Deep architecture for high-speed railway insulator surface defect detection: denoising autoencoder with multitask learning. IEEE Trans. Instrum. Meas. 68(8), 2679–2690 (2019)
5. Zhang, D., Gao, S., Yu, L., Kang, G., Wei, X., Zhan, D.: DefGAN: defect detection GANs with latent space pitting for high-speed railway insulator. IEEE Trans. Instrum. Meas. 70, 1–10 (2021)