1. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
2. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2018)
3. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems, 31 (2018)
4. Liang, J., Hu, D., He, R., Feng, J.: Distill and fine-tune: Effective adaptation from a black-box source model, arXiv preprint arXiv:2104.01539 1 (3) (2021)
5. Zhang, H., Zhang, Y., Jia, K., Zhang, L.: Unsupervised domain adaptation of black-box source models, arXiv preprint arXiv:2101.02839 (2021)