Author:
Qin Jianjian,Gu Chunzhi,Yu Jun,Zhang Chao
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Wang, G., Han, S., Ding, E., Huang, D.: Student-teacher feature pyramid matching for anomaly detection. In: The British Machine Vision Conference (BMVC) (2021)
2. Paula Monteiro, R., Lozada, M.C., Mendieta, D.R.C., Loja, R.V.S., Bastos Filho, C.J.A.: A hybrid prototype selection-based deep learning approach for anomaly detection in industrial machines. Expert Syst. Appl. 204, 117528 (2022)
3. Ko, J.U., Na, K., Oh, J.-S., Kim, J., Youn, B.D.: A new auto-encoder-based dynamic threshold to reduce false alarm rate for anomaly detection of steam turbines. Expert Syst. Appl. 189, 116094 (2022)
4. Qin, J., Gu, C., Yu, J., Zhang, C.: Teacher-student network for 3d point cloud anomaly detection with few normal samples. Expert Syst. Appl. 228, 120371 (2023)
5. Jang, J., Hwang, E., Park, S.-H.: N-pad: neighboring pixel-based industrial anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4364–4373 (2023)