1. Siegel, R., Jemal, A.: Cancer Facts and Figures 2017. American Cancer Society, Atlanta (2017)
2. Han, H., Li, L., Han, F., Song, B., Moore, W., Liang, Z.: Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. IEEE J. Biomed. Health Inform. 19(2), 648–659 (2015)
3. Taghavi Namin, S., Abrishami Moghaddam, H., Jafari, R., Esmaeil-Zadeh, M., Gity, M.: Automated detection and classification of pulmonary nodules in 3D thoracic CT images. In: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), 2010, pp. 3774–3779. IEEE
4. Riccardi, A., Petkov, T.S., Ferri, G., Masotti, M., Campanini, R.: Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med. Phys. 38(4), 1962–1971 (2011)
5. Sato, Y., Westin, C.-F., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R.: Tissue classification based on 3D local intensity structures for volume rendering. IEEE Trans. Vis. Comput. Graph. 6(2), 160–180 (2000)