1. Shi, F., Cheng, J., Wang, L., Yap, P.T., Shen, D.G.: LRTV: MR imagesuper-resolution with low-rank and total variation regularizations. IEEETrans. Med. Imag. 34(12), 2459–2466 (2015)
2. Esben, P., Poot, D.H.J., Monique, B., Gyula, K., Gavin, H., Piotr, W., vanderLouise, W., Wiro, J.N., Erik, M.: Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time. Magn. Reson. Med. 68(6), 1983–1993 (2012)
3. Pham, C.H., Ducournau, A., Fablet, R., Rousseau, F.: Brain MRI super-resolution using deep 3D convolutional networks. In: Proceedings of International Symposium on Biomedical Imaging, pp. 197–200
4. Oktay, O., Bai, W., Lee, M., Guerrero, R., Kamnitsas, K., Caballero, J., Marvao, A., Cook, S., O’Regan, D., Rueckert, D.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Proceedings of 19th International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 246–254
5. Giannakidis, A., Oktay, O., Keegan, J., Spadotto, V., Voges, I., Smith, G., Pierce, I., Bai, W., Rueckert, D., Ernst, S., Gatzoulis, M.A., Pennell, D.J., Narayan, S.B., Firmin, D.N.: Super-resolution reconstruction of late gadolinium cardiovascular magnetic resonance images using a residual convolutional neural network. In: Proceedings of 25th Science Meeting International Society for Magnetic Resonance in Medicine