Tracking deformation velocity via PSI and SBAS as a sign of landslide failure: an open-pit mine-induced landslide in Himmetoğlu (Bolu, NW Turkey)

Author:

Eker RemziORCID,Aydın AbdurrahimORCID,Görüm TolgaORCID

Abstract

AbstractA destructive landslide occurred in Himmetoğlu village in Göynük District (Bolu, NW Turkey) caused by open-pit coal mining activities. Field observations after the landslide failure and interviews with villagers motivated us to question the possibility of using satellite SAR data to detect precursory signs of failure with regard to deformation velocity. In this study, first, landslide deformations were mapped by applying the digital elevation model (DEM) of Difference (DoD) method using DEMs from aerial photography and UAV data. However, the primary aim was to track deformation velocity as a sign of landslide failure with persistent scatterers interferometry (PSI) and small baseline subset (SBAS) methods from Sentinel-1A data. For the SBAS, the deformation velocity for ascending and descending orbits varied between − 12 and 39 mm year−1 and between − 24 and 6 mm year−1, respectively. For the PSI, the deformation velocity for ascending and descending orbits varied between − 16 and 31 mm year−1 and between − 18 and 20 mm year−1, respectively. PSI and SBAS resulted in sharply changing line-of-sight displacement rates, which were interpreted as slope failure signs, from three months prior to the landslide. In addition, higher deformation velocities were observed in locations closer to landslide crack as expected. Based on our findings, we concluded that SAR interferometric time-series analysis have the makings of being used as a suitable approach in early discerning and avoiding potential slope failures in open-pit mining areas, when it is made carefully by observing the progress in mining activities by considering the other factors such as rainfall and earthquakes.

Funder

Izmir Katip Celebi University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3