Variation patterns of landslide basal friction revealed from long-period seismic waveform inversion

Author:

Yu Dan,Huang XinghuiORCID,Li Zhengyuan

Abstract

Abstract A catastrophic landslide struck the Xiaoba village in Fuquan, Guizhou, southwestern China at about 8:30 p.m. (Beijing Time, UTC + 8) on August 27, 2014. The landslide and induced impulse water waves destroyed two villages and killed 23 persons. By reprocessing seismic signals from a seismic network deployed in the surrounding area of the landslide, we recognized the event from low-frequency seismic signals and subsequently performed a long-period seismic waveform inversion to obtain its force–time history. The inversion results reveal that the maximum force for the landslide is 5 × 109 N, and the duration of the landslide is 38.4 s. The landslide reached its maximum velocity of 12.4 m/s at 13.2 s after its initiation, and the mass center plugged into the quarry at 24.2 s. Based on the inversion results, we estimated basal friction of the landslide. We found the friction coefficient rapidly reduces to a relatively steady-state value of ~ 0.4 at a steady-state distance of 35 m and subsequently reduces in a near-linear manner that satisfies the empirical formula $$ \mu = - 1.4d + 0.44 $$μ=-1.4d+0.44, where $$ d $$d is sliding distance in km. The reduction in friction revealed by the formula is compatible with the finding of previous studies for landslides of similar volume in landslide acceleration stage. However, our result does not make it possible for the friction coefficient to increase again in landslide deceleration stage that a velocity-dependent friction law would allow. The friction variation patterns can be used to constrain input parameters in numerical landslide simulation, which can predicate runout distance and deposit areas for massive landslides to carry out landslide hazard assessment.

Funder

National Key Basic Research Program of China

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3