A method to reconstruct flood scenarios using field interviews and hydrodynamic modelling: application to the 2017 Suleja and Tafa, Nigeria flood

Author:

Malgwi Mark Bawa,Ramirez Jorge Alberto,Zischg Andreas,Zimmermann Markus,Schürmann Stefan,Keiler Margreth

Abstract

AbstractThe scarcity of model input and calibration data has limited efforts in reconstructing scenarios of past floods in many regions globally. Recently, the number of studies that use distributed post-flood observation data collected throughout flood-affected communities (e.g. face-to-face interviews) are increasing. However, a systematic method that applies such data for hydrodynamic modelling of past floods in locations without hydrological data is lacking. In this study, we developed a method for reconstructing plausible scenarios of past flood events in data-scarce regions by applying flood observation data collected through field interviews to a hydrodynamic model (CAESAR-Lisflood). We tested the method using 300 spatially distributed flood depths and duration data collected using questionnaires on five river reaches after the 2017 flood event in Suleja and Tafa region, Nigeria. A stepwise process that aims to minimize the error between modelled and observed flood depth and duration at the locations of interviewed households was implemented. Results from the reconstructed flood depth scenario produced an error of ± 0.61 m for all observed and modelled locations and lie in the range of error produced by studies using comparable hydrodynamic models. The study demonstrates the potential of utilizing interview data for hydrodynamic modelling applications in data-scarce regions to support regional flood risk assessment. Furthermore, the method can provide flow depths and durations at houses without observations, which is useful input data for physical vulnerability assessment to complement disaster risk reduction efforts.

Funder

Swiss government excellence scholarship

Universität Bern

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3