On the potential for megathrust earthquakes and tsunamis off the southern coast of West Java and southeast Sumatra, Indonesia

Author:

Supendi PepenORCID,Widiyantoro Sri,Rawlinson Nicholas,Yatimantoro Tatok,Muhari Abdul,Hanifa Nuraini Rahma,Gunawan Endra,Shiddiqi Hasbi Ash,Imran Iswandi,Anugrah Suci Dewi,Daryono Daryono,Prayitno Bambang Setyo,Adi Suko Prayitno,Karnawati Dwikorita,Faizal Lutfi,Damanik Ruben

Abstract

AbstractHigh seismicity rates in and around West Java and Sumatra occur as a result of the Indo-Australian plate converging with and subducting beneath the Sunda plate. Large megathrust events associated with this process likely pose a major earthquake and tsunami hazard to the surrounding community, but further effort is required to help understand both the likelihood and frequency of such events. With this in mind, we exploit catalog seismic data sourced from the Agency for Meteorology, Climatology, and Geophysics (BMKG) of Indonesia and the International Seismological Centre (ISC) for the period April 2009 through to July 2020, in order to conduct earthquake hypocenter relocation using a teleseismic double-difference method. Our results reveal a large seismic gap to the south of West Java and southeast Sumatra, which is in agreement with a previous GPS study that finds the region to be a potential future source of megathrust earthquakes. To investigate this further, tsunami modeling was conducted in the region for two scenarios based on the estimated seismicity gaps and the existence of a backthrust fault. We show that the maximum tsunami height could be up to 34 m along the west coast of southernmost Sumatra and along the south coast of Java near the Ujung Kulon Peninsula. This estimate is comparable with the maximum tsunami height predicted by a previous study of southern Java in which earthquake sources were derived from the inversion of GPS data. However, the present study extends the analysis to southeast Sumatra and demonstrates that estimating rupture from seismic gaps can lead to reliable tsunami hazard assessment in the absence of GPS data.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3