Abstract
AbstractRainfall-induced landslides represent a major threat to human activities, and thus an improved understanding of their triggering mechanisms is needed. The paper reports some preliminary inferences on this topic, based on the data recorded over a 2-year period by a multi-parametric monitoring station located on one of the slopes of the Monterosso catchment (Cinque Terre, north-western Italy). This catchment has experienced multiple, concurrent shallow landslides after intense rainfall events. After defining a soil hydraulic model through data interpretation and numerical simulations, slope stability analyses were performed to elucidate several aspects related to shallow landslide occurrence. Both long-term climate conditions and single rainfall events were simulated via physically based approaches. The findings from these simulations enabled us to assume the pattern of infiltration and quantify the impact of soil hydraulic behavior on landslide triggering conditions. In this regard, various analyses were carried out on the same triggering event both at local scale and in the overall catchment, with a view to highlighting the role of initial soil moisture and soil hysteretic behavior in slope stability.
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献