Probabilistic modeling of dam failure scenarios: a case study of Kanlikoy Dam in Cyprus

Author:

Turkel A. O.,Zaifoglu HasanORCID,Yanmaz A. M.

Abstract

AbstractOne of the most perilous natural hazards is flooding resulting from dam failure, which can devastate downstream infrastructure and lead to significant human casualties. In recent years, the frequency of flash floods in the northern part of Nicosia, Cyprus, has increased. This area faces increased risk as it lies downstream of the Kanlikoy Dam, an aging earth-fill dam constructed over 70 years ago. In this study, we aim to assess potential flood hazards stemming from three distinct failure scenarios: piping, 100-year rainfall, and probable maximum precipitation (PMP). To achieve this, HEC-HMS hydrologic model findings were integrated into 2D HEC-RAS hydraulic models to simulate flood hydrographs and generate flood inundation and hazard maps. For each scenario, Monte Carlo simulations using McBreach software produced four hydrographs corresponding to exceedance probabilities of 90%, 50%, 10%, and 1%. The results indicate that all dam breach scenarios pose a significant threat to agricultural and residential areas, leading to the destruction of numerous buildings, roads, and infrastructures. Particularly, Scenario 3, which includes PMP, was identified as the most destructive, resulting in prevailing flood hazard levels of H5 and H6 in the inundated areas. The proportion of inundated areas in these high hazard levels varied between 52.8% and 57.4%, with the number of vulnerable structures increasing from 248 to 321 for exceedance probabilities of 90% and 1%, respectively. Additionally, the number of flooded buildings ranged from 842 to 935, and 26 to 34 km of roads were found to be inundated in this scenario. These findings revealed the need for authorities to develop comprehensive evacuation plans and establish an efficient warning system to mitigate the flood risks associated with dam failure.

Funder

Middle East Technical University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3