Important drivers of East African monsoon variability and improving rainy season onset prediction

Author:

Roy IndraniORCID,Mliwa Meshack,Troccoli Alberto

Abstract

AbstractMonsoon rain and its year-to-year variability have a profound influence on Africa’s socio-economic structure by heavily impacting sectors such as agricultural and energy. This study focuses on major drivers of the east African monsoon during October-November-December (OND) which is the standard time window for the onset of the rainy season, be it unimodal or bimodal. Two drivers viz. Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) both separately indicate very strong positive connections with monsoon (OND) rain not only in the OND season with zero seasonal lag, but the signal is also present even taking IOD and ENSO a season ahead. A compositing approach is applied that can additionally identify strong signals when different combinations of ENSO and IOD phases act as confounding factors. Results of precipitation anomaly suggest that when IOD and ENSO are both on the same phase in July-August-September (JAS), a significant OND rainfall anomaly occurs around the east African sector: A deficit (excess) of OND monsoon rain occurs when both drivers are in a negative (positive) phase during JAS. A location Kibaha in Tanzania, for which station data are available, is considered for a more in-depth analysis. The uncertainty range in cumulative OND rainfall is also reduced to a large degree when IOD and ENSO phases are both negative in JAS. These results can be used for prediction purposes and interestingly, that criterion of IOD and ENSO being of same phase in JAS was again matched in 2022 (both negative) and hence it was possible to deliver early warnings for a deficit in rainfall a season ahead. Techniques to compute the monsoon onset as determined by meteorological services such as the Tanzania Meteorological Authority rely on various thresholds, which may also vary by country. To overcome some of the issues with thresholds-based techniques, other definitions of ‘onset’ take into account cumulative rainfall amount and such technique has also been tested and compared. In both approaches, late (early) onsets dominate in years when ENSO and IOD are both negative (positive) during JAS. In these cases, it is therefore possible to provide an estimation of cumulative rainfall and onset for OND in terms of average, median value, range and distribution of rainfall one season in advance. Such results have implications for optimizing agricultural, water and energy management, also mitigating possible severe production losses, which would impact the livelihoods of millions of Africans.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3