Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology
Reference111 articles.
1. Al-Najjar HAH, Kalantar B, Pradhan B, Saeidi V (2019) Conditioning factor determination for mapping and prediction of landslide susceptibility using machine learning algorithms. In: Schulz K, Nikolakopoulos KG, Michel U (eds) Earth resources and environmental remote sensing/GIS applications X. SPIE
2. Ashby J, Moreno-Madriñán M, Yiannoutsos C, Stanforth A (2017) Niche modeling of dengue fever using remotely sensed environmental factors and boosted regression trees. Remote Sens 9:328. https://doi.org/10.3390/rs9040328
3. Atkinson P, Jiskoot H, Massari R, Murray T (1998) Generalized linear modelling in geomorphology. Earth Surf Process Landf 23:1185–1195. https://doi.org/10.1002/(SICI)1096-9837(199812)23:13%3c1185::AID-ESP928%3e3.0.CO;2-W
4. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Cent Jpn Geomorphol 65(1–2):15–31. https://doi.org/10.1016/J.GEOMORPH.2004.06.010
5. Ballabio C, Sterlacchini S (2012) Support vector machines for landslide susceptibility mapping: the Staffora river basin case study. Italy Math Geosci 44(1):47–70. https://doi.org/10.1007/s11004-011-9379-9
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献