Identifying bridges prone to instream wood accumulation: insights from bridges across the UK

Author:

Bangnira FrancisORCID,Marti-Cardona Belen,Imam Boulent,Ruiz-Villanueva Virginia

Abstract

AbstractAccumulation of instream large wood (i.e., fallen trees, trunks, branches, and roots) at bridges during floods may exacerbate flooding, scour and cause structural failure. Yet, explaining and predicting the likelihood of a bridge trapping wood remains challenging. Quantitative data regarding wood accumulation at bridges are scarce, and most equations proposed to estimate the accumulation probability were derived from laboratory experiments, and include variables such as flow velocity, Froude number, and approaching wood volume or size which are difficult to obtain. Other evaluations based on technical reports and information regarding wood removal have been proposed but are mostly qualitative. Until now, a data-driven approach combining multiple quantitative accessible variables at the river reach and catchment scales remains lacking. As a result, the controlling parameters explaining whether a bridge is prone to trap wood are still unclear. This work aims to fill this gap by analysing a database of 49 bridges across the United Kingdom (UK) classified as prone and not prone to wood accumulation. The database contained information regarding the geometry of the bridge (i.e., number of piers and pier shape) and we added parameters describing the upstream river channel morphology, the riparian landcover, and high-flow characteristics. We applied multivariate statistics and a machine learning approach to identify the variables that explained and predicted the predisposition of bridges to wood accumulation. Results showed that the number of bridge piers, the unit stream power, the pier shape, and the riparian forested area explained 87% of the total variability for the training dataset (0.87 training accuracy), and the selected model had a testing accuracy of 0.60 (60%). Although limited by the sample size, this study sheds light on the identification of bridges prone to wood accumulation and can inform bridge design and management to mitigate wood-related hazards.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3