Regression relationships for conversion of body wave and surface wave magnitudes toward Das magnitude scale, Mwg

Author:

Das Ranjit,Menesis Claudio,Urrutia Diego

Abstract

AbstractA reliable and standardized estimation of earthquake size is a fundamental requirement for all tectonophysical and engineering applications. Several investigations raised questions about the determinations of smaller and intermediate earthquakes using Mw scale. Recent investigations (Das et al. in Bull Seismol Soc Am 108(4):1995–2007, 2018b) show that the moment magnitude scale Mw is not applicable for lower and intermediate ranges throughout the world and does not efficiently represent the seismic source potential due to its dependence on surface wave magnitudes; therefore, an observed seismic moment (M0)-based magnitude scale, Mwg, which smoothly connects seismic source processes and highly correlates with seismic-radiated energy (Es) compared to the Mw scale is suggested. With the goal of constructing a homogeneous data set of Mwg to be used for earthquake-related studies, relationships for body wave (mb) and surface wave magnitudes (Ms) toward Mwg have been developed using regression methodologies such as generalized orthogonal regression (GOR) (GOR1: GOR relation is expressed in terms of the observed independent variable; and GOR2: GOR relation is used inappropriately in terms of theoretical true point of GOR line) and standard least-square regression (SLR). In order to establish regression relationships, global data have been considered during 1976–2014 for mb magnitudes of 524,790 events from the International Seismological Centre (ISC) and 326,201 events from the National Earthquake Information Center (NEIC), Ms magnitudes of 111,443 events from ISC along with 41,810 Mwg events data from the Global Centroid Moment Tensor (GCMT). Scaling relationships have been obtained between mb and Mwg for magnitude range 4.5 ≤ mb ≤ 6.2 for ISC and NEIC events using GOR1, GOR2 and SLR methodologies. Furthermore, scaling relationships between Ms and Mwg have been obtained for magnitude ranges 3.0 ≤ Ms ≤ 6.1 and 6.2 ≤ Ms ≤ 8.4 using GOR1, GOR2 and SLR procedures. Our analysis found that GOR1 provides improved estimates of dependent variable compared to GOR2 and SLR on the basis of statistical parameters (mainly uncertainty on slope and intercept, RMSE and Rxy) as reported in Das et al. (2018b). The derived global scaling relationships would be helpful for various seismological applications such as seismicity, seismic hazard and Risk assessment studies.

Funder

FONDECYT INICIATION

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3