Abstract
AbstractNairobi, Kenya’s capital city, is one of the fastest-growing cities on the continent. The rapid expansion of human activities has resulted in the overexploitation of natural resources, such as water. In the past, Nairobi had been identified as a vulnerable area to environmental hazards, such as land subsidence. Due to the lack of a functioning deformation-monitoring system in Kenya, the subsidence in Nairobi has yet to be empirically quantified. In this paper, we report the results of the first InSAR-based spatial assessment of land subsidence in Nairobi. Our analysis indicates both localized and regionalized subsidence in several locations in the west and north west of Nairobi. The largest deforming unit in Nairobi’s western part is subsiding at approximately 62 mm/yr. Land subsidence can be attributed to groundwater overexploitation because it coincides with regions with the highest decline in groundwater levels. However, subsidence can also be attributed to consolidation associated with rapid urbanization in other areas such as east of Nairobi. This evaluation corroborates previous hydrogeological investigations which indicated that Nairobi was at risk of subsidence, contributing to flooding in some residential areas. The findings will help guide future decision-making in several agencies as well as provide an effective tool for planning mitigation measures to prevent further subsidence. A few of these include regulating borehole drilling, planning of roads and buildings, and locating groundwater observation wells. In addition, the observed significant land subsidence stresses the need for an updated geodetic reference system. Since Nairobi plays a significant role in the economy of Kenya, the effects of subsidence may be devastating and it is imperative that steps are taken to minimize their impact.
Funder
Technische Universität Braunschweig
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献