Portability of semantic and spatial–temporal machine learning methods to analyse social media for near-real-time disaster monitoring

Author:

Havas ClemensORCID,Resch BerndORCID

Abstract

AbstractUp-to-date information about an emergency is crucial for effective disaster management. However, severe restrictions impede the creation of spatiotemporal information by current remote sensing-based monitoring systems, especially at the beginning of a disaster. Multiple publications have shown promising results in complementing monitoring systems through spatiotemporal information extracted from social media data. However, various monitoring system criteria, such as near-real-time capabilities or applicability for different disaster types and use cases, have not yet been addressed. This paper presents an improved version of a recently proposed methodology to identify disaster-impacted areas (hot spots and cold spots) by combining semantic and geospatial machine learning methods. The process of identifying impacted areas is automated using semi-supervised topic models for various kinds of natural disasters. We validated the portability of our approach through experiments with multiple natural disasters and disaster types with differing characteristics, whereby one use case served to prove the near-real-time capability of our approach. We demonstrated the validity of the produced information by comparing the results with official authority datasets provided by the United States Geological Survey and the National Hurricane Centre. The validation shows that our approach produces reliable results that match the official authority datasets. Furthermore, the analysis result values are shown and compared to the outputs of the remote sensing-based Copernicus Emergency Management Service. The information derived from different sources can thus be considered to reliably detect disaster-impacted areas that were not detected by the Copernicus Emergency Management Service, particularly in densely populated cities.

Funder

Austrian Science Fund

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3